1,035 research outputs found

    Photoacoustic detection of circular dichroism in a square array of nano-helices

    Get PDF
    A novel nano-structured material has been assembled by means of a focused ion beam technique. This artificial material is composed of a square array of nano-helices built upon a multilayered substrate. Optical measurements of circular dichroism of a sample are confirmed by photo-acoustic investigations, which allow to directly study the helix-field interaction apart from the dielectric substrate. The study is consistent with 3D numerical simulations, and demonstrates to be an efficient tool of investigation for the entire class of these novel structured materials

    Novel grating design approach by radiation modes coupling in nonlinear optical waveguides.

    Get PDF
    In integrated optics the radiation modes represent a negative aspect regarding the propagation of guided modes. They characterize the losses of the substrate region but can contribute to enhance the guided modes by considering the coupling through properly designed gratings arranged at the core/substrate interface. By tailored gratings, the radiation modes become propagating modes and increase the guided power inside the waveguide guiding region. This enhancement is useful especially in low intensity processes such as second harmonic chi(2) conversion process. For this purpose, we analyze accurately the radiation modes contribution in a chi(2) GaAs/AlGaAs nonlinear waveguide where second harmonic signal is characterized by a low power intensity. This analysis considers a new design approach of multiple grating which enhances a fundamental guided mode at lambda(FU) =1.55 microm and a codirectional second harmonic guided mode at lambda(SH) =0.775 microm. In particular we analyze the second harmonic conversion efficiency by studying the coupling effect of three gratings. The combined effects of the gratings provide an efficient second harmonic field conversion. Design considerations, based on the coupled mode equations analysis, are theoretically discussed. A good agreement between analytical and numerical results is observed

    A Monolithic Time Stretcher for Precision Time Recording

    Get PDF
    Identifying light mesons which contain only up/down quarks (pions) from those containing a strange quark (kaons) over the typical meter length scales of a particle physics detector requires instrumentation capable of measuring flight times with a resolution on the order of 20ps. In the last few years a large number of inexpensive, multi-channel Time-to-Digital Converter (TDC) chips have become available. These devices typically have timing resolution performance in the hundreds of ps regime. A technique is presented that is a monolithic version of ``time stretcher'' solution adopted for the Belle Time-Of-Flight system to address this gap between resolution need and intrinsic multi-hit TDC performance.Comment: 9 pages, 15 figures, minor corrections made, to appear as JINST_008

    PCI Express Over Optical Links for Data Acquisition and Control

    Get PDF
    PCI Express is a new I/O technology for desktop, mobile, server and communications platforms designed to allow increasing levels of computer system performance. The serial nature of its links and the packet based protocols allows an easy geographical decoupling of a peripheral device. We have investigated the possibility of using an optical physical layer for the PCI Express, and we have built a bus adapter which can bridge remote busses (> 100m) to a single host computer without even the need of a specialized driver, given the legacy PCI compatibility of the PCI Express hardware. This adapter has been made tolerant to harsh environmental conditions, like strong magnetic fields or radiation fluxes, as the data acquisition needs of high energy physics experiments often require

    Polarization Response in InAs Quantum Dots: Theoretical Correlation between Composition and Electronic Properties

    Full text link
    III-V growth and surface conditions strongly influence the physical structure and resulting optical properties of self-assembled quantum dots (QDs). Beyond the design of a desired active optical wavelength, the polarization response of QDs is of particular interest for optical communications and quantum information science. Previous theoretical studies based on a pure InAs QD model failed to reproduce experimentally observed polarization properties. In this work, multi-million atom simulations are performed to understand the correlation between chemical composition and polarization properties of QDs. A systematic analysis of QD structural parameters leads us to propose a two layer composition model, mimicking In segregation and In-Ga intermixing effects. This model, consistent with mostly accepted compositional findings, allows to accurately fit the experimental PL spectra. The detailed study of QD morphology parameters presented here serves as a tool for using growth dynamics to engineer the strain field inside and around the QD structures, allowing tuning of the polarization response.Comment: 8 pages, 6 figures; accepted for publication in IOP Nanotechnology journa

    Bubble concentration on spheres for supercritical elliptic problems

    Full text link
    We consider the supercritical Lane-Emden problem (P_\eps)\qquad -\Delta v= |v|^{p_\eps-1} v \ \hbox{in}\ \mathcal{A} ,\quad u=0\ \hbox{on}\ \partial\mathcal{A} where A\mathcal A is an annulus in \rr^{2m}, m2m\ge2 and p_\eps={(m+1)+2\over(m+1)-2}-\eps, \eps>0. We prove the existence of positive and sign changing solutions of (P_\eps) concentrating and blowing-up, as \eps\to0, on (m1)(m-1)-dimensional spheres. Using a reduction method (see Ruf-Srikanth (2010) J. Eur. Math. Soc. and Pacella-Srikanth (2012) arXiv:1210.0782)we transform problem (P_\eps) into a nonhomogeneous problem in an annulus \mathcal D\subset \rr^{m+1} which can be solved by a Ljapunov-Schmidt finite dimensional reduction

    Ground state of excitons and charged excitons in a quantum well

    Get PDF
    A variational calculation of the ground state of a neutral exciton and of positively and negatively charged excitons (trions) in single quantum well is presented. We study the dependance of the correlation energy and of the binding energy on the well width and on the hole mass. Our results are are compared with previous theoretical results and with avalaible experimental data.Comment: 8 pages, 5 figures presented to OECS

    A supercritical elliptic problem in a cylindrical shell

    Full text link
    We consider the problem Δu=up2uinΩ,u=0onΩ, -\Delta u=|u|^{p-2}u in \Omega, u=0 on \partial\Omega, where Ω:={(y,z)Rm+1×RNm1:0<a<y<b<}\Omega:=\{(y,z)\in\mathbb{R}^{m+1}\times\mathbb{R}^{N-m-1}: 0<a<|y|<b<\infty\}, 0mN10\leq m\leq N-1 and N2N\geq2. Let 2N,m:=2(Nm)/(Nm2)2_{N,m}^{\ast}:=2(N-m)/(N-m-2) if m<N2m<N-2 and 2N,m:=2_{N,m}^{\ast}:=\infty if m=N2m=N-2 or N1N-1. We show that 2N,m2_{N,m}^{\ast} is the true critical exponent for this problem, and that there exist nontrivial solutions if 2<p<2N,m2<p<2_{N,m}^{\ast} but there are no such solutions if p2N,mp\geq2_{N,m}^{\ast}

    Scalar time domain modeling and coupling of second harmonic generation process in GaAs discontinuous optical waveguide

    Get PDF
    We present in this work the scalar potential formulation of second harmonic generation process in chi((2)) nonlinear analysis. This approach is intrinsically well suited to the applications of the concept of circuit analysis and synthesis to nonlinear optical problems, and represents a novel alternative method in the analysis of nonlinear optical waveguide, by providing a good convergent numerical solution. The time domain modeling is applied to nonlinear GaAs asymmetrical waveguide with dielectric discontinuities in the hypothesis of quasi phase matching condition in order to evaluate the efficiency conversion of the second harmonic signal. The accuracy of the modeling is validated by the good agreement with the published experimental results. The effective dielectric constant method allows to extend the analysis also to 3D optical waveguides. (c) 2008 Optical Society of America

    Stress-driven AlN cantilever-based flow sensor for fish lateral line system

    Get PDF
    In this work, we report on the fabrication and characterization of stress-driven aluminum nitride (AlN) cantilevers to be applied as flow sensor for fish lateral line system. The fabricated structures exploit a multilayered cantilever AlN/molybdenum (Mo) and a Nichrome 80/20 alloy as piezoresistor. Cantilever arrays are realized by using conventional micromachining techniques involving optical lithography and etching processes. The fabrication of the piezoresistive cantilevers is reported and the operation of the cantilever as flow sensor has been investigated by electrical measurement under nitrogen flowing condition showing a sensitivity to directionality and to low value applied forces
    corecore